Localization and Evaluation of Fatigue Damage in Long Fiber Epoxy Laminates with Measurements Based on Image Correlation

نویسندگان

  • S. Giancane
  • F. W. Panella
  • V. Dattoma
چکیده

A study on fatigue damage characterization for long fibre epoxy composites is here presented. The main aim is to calculate with full field technique the local damage experimental parameters, in order to express the material damage state and to validate a procedure for the localization of the probable zones of failure. It is well known that fatigue damage evolves mainly in some localized areas and it is important to monitor these points throughout the residual life. Two damage parameters are chosen as representative for failure evolution: local stiffness reduction and dissipated energy per cycle. These parameters are cyclically evaluated on the base of deformation monitoring, by the means of Digital Image Correlation technique. Full field measures are stored and elaborations allows to distinguish the most damaged zones.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effect of Nanoclay on Damaged Areas of Composite and Nanocomposite Laminates

The influence of nanoclay on the impact damage resistance of glass fiber–epoxy composites has been investigated using high-velocity repeated ice impact tests. The incorporation of nanoclay into epoxy enhances the impact resistance of the composites. The impact of ice is a realistic scenario for composite structures such as aircraft fuselages, wing skins and fan blades and it is not a completely...

متن کامل

On the Use of Acoustic Emission and Digital Image Correlation for Welded Joints Damage Characterization

A series of tests have been conducted to investigate fatigue damage characterization in corroded welded steel plates using structural health monitoring (SHM) techniques. Acoustic Emission (AE) is a non-destructive testing (NDT) technique with potential applications for locating and monitoring fatigue cracks in service. In the present work, AE is implemented to characterize damage during crack e...

متن کامل

Environmental Effects on Mechanical Properties of Glass/Epoxy and Fiber Metal Laminates, Part I: Hygrothermal Aging

In this article, the effect of hygrothermal aging on mechanical properties of fiber metal laminates (FMLs) and E-glass/epoxy (GE) composites is investigated. First, FML and GE specimens were built using wet lay-up technique under vacuum pressure. Hygrothermal aging simulation was then carried out on both specimen types in distilled water at a constant temperature of 90 °C for 5 weeks. The resul...

متن کامل

Environmental effects on mechanical properties of glass/epoxy and fiber metal laminates, Part II: Isothermal aging

The aim of this study is to investigate effects of isothermal aging on mechanical properties of fiber metal laminates (FMLs) and glass/epoxy composites. For this purpose, both materials were fabricated using the wet lay-up manufacturing technique under vacuum pressure. Both the glass/epoxy composites and the FML specimens were then subjected to isothermal aging (130°C, dried air) for up to 5 we...

متن کامل

Investigation of Buckling Analysis of Epoxy/ Nanoclay/ Carbon Fiber Hybrid Laminated Nanocomposite: Using VARTM Technique for Preparation

In the current study the effect of nanoclay content and carbon fiber orientation on the buckling properties of epoxy/nanoclay/ carbon fiber orientation is investigated. Buckling samples were prepared with 1, 3 and 5 wt% of nanoclay and 0, 30 and 45 degrees of fiber orientations based on VARTM technique. The results obtained from the buckling tests showed that adding 1wt% of nanoclay into the pu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007